Chapter 5
 Lecture 1 \& 2 Collision

Alkhlaq Hussain

5.1 Collision of Particles

Collision is when two bodies run into each other Collision or scattering experiments are important to understand the nature of interaction between two particles.

Nature of interacting Particles/bodies.

5.1 Collision of Particles

Rutherford's experiment of α-particles scattering by the atoms in a thin foil of gold revealed the existence of positively charged nucleus in the atom.
\Rightarrow The α-particles were scattered in all directions.
$>$ Some passes undeflected by the foil.
$>$ Some were scattered through larger angles even back scattered.
\Rightarrow The only valid explanation of large angle deflection was if the total positive charge were concentrated at some small
 region.
$>$ Rutherford called it nucleus.

5.1 Collision of Particles

Collision or scattering

Initial Condition: the particles are for away from each other.

Target usually at rest and the other approaches the stationary target.

Particle interact in short interval of time.
The interaction forces appears and play their role.

Final condition; particles move away from each other and the incident particle is
 deflected through an angle called scattering angle.

5.1 Collision of Particles

The force of interaction in different cases are due to different reasons.
$>$ In the collision between two billiard balls, the force of interaction is due to elasticity. Which appear only when balls come into physical contact.
$>$ In case of scattering of alpha particle by the nuclei, the force is due to electrostatic interaction.
$>$ In deflection of stars, the force of interaction is due to of gravity,

5.1 Collision of Particles

Elastic and Inelastic Scattering

In Elastic Scattering; kinetic energy and momentum remain conserved and internal structure is not affected.

In Inelastic scattering; kinetic energy is not conserved. It is converted into other forms of energy such as heat or sound.

Most of the interactions are inelastic particularly when large objects are interacting. Similarly, in case of charge particles interaction, some amount of energy is released in form of electromagnetic radiation.

In some particles interaction other sub-atomic particles are also created.

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Consider elastic scattering in Laboratory \& C.M system.
i) In general collision;
$>$ particles move from certain distance towards each other.
$>$ Both particles come closer and interact each other before scattering in final direction.
ii) Laboratory frame
$>$ usually target particle is taken at rest.
$>$ Incident particle approach the target at rest.
> Reach closest distance \& Scattered in different direction depending on nature of interaction..
$>$ After collision Incident is called scattered \& target is called recoiled particle

5.2 Elastic Scattering: Laboratory and Centre of Mass System

iii) Centre of mass frame;

Centre of mass is assumed to be at rest.
$>$ Both incident and target particle approach each other as observed from centre of mass.
$>$ Regardless of the actual state of target particle which may be at rest or in motion.
$>$ In centre of mass both particles approach each other and after interaction the are scattered in different directions.

5.2 Elastic Scattering: Laboratory and Centre of Mass System

> Choice of proper coordinated system is important in solving scattering problems.
> Each system has its own advantages and disadvantages.
$>$ Actual measurements in experiments are made in the laboratory coordinate system.
> To avail the advantages \& simplifications obtained in a C. M. coordinates system,
> The transformation relations between the quantities measured in the laboratory coordinate system and those measured in the C.M system.

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations of C.M and Lab. System

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations of C.M and Lab. System

" \mathbf{R} " is the position vector of Centre of Mass in the laboratory coordinates system.
$m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}=M \boldsymbol{R}$
Differentiating above equation.
$\Rightarrow m_{1} \dot{\boldsymbol{r}_{1}}+m_{2} \dot{\boldsymbol{r}_{2}}=M \dot{\boldsymbol{R}}$
$\Rightarrow m_{1} \boldsymbol{u}_{1}+m_{2} \boldsymbol{u}_{2}=M \boldsymbol{V}$
Where $\boldsymbol{u}_{2}=0$ and $m_{1}+m_{2}=M$
$\Rightarrow m_{1} \boldsymbol{u}_{1}=\left(m_{1}+m_{2}\right) \boldsymbol{V}$
$\Rightarrow \boldsymbol{V}=\frac{m_{1}}{\left(m_{1}+m_{2}\right)} \boldsymbol{u}_{1}$
C.M is moving towards m_{2} with velocity $\frac{m_{1}}{\left(m_{1}+m_{2}\right)} \boldsymbol{u}_{1}$ in laboratory coordinate system.

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations of C.M and Lab. System

Since in C.M system, centre of mass is at rest and " m_{2} " is moving towards the centre of mass. Therefore, " m_{2} " must move with velocity " u_{2}^{\prime} "

$$
\begin{equation*}
\boldsymbol{u}_{2}^{\prime}=-\boldsymbol{V}=-\frac{m_{1}}{\left(m_{1}+m_{2}\right)} \boldsymbol{u}_{1} \tag{5.2.2}
\end{equation*}
$$

And $\boldsymbol{u}_{1}^{\prime}=\boldsymbol{u}_{1}-V$

$$
\begin{align*}
& \Rightarrow \boldsymbol{u}_{1}^{\prime}=\boldsymbol{u}_{1}-\frac{m_{1}}{\left(m_{1}+m_{2}\right)} \boldsymbol{u}_{1} \\
& \Rightarrow \boldsymbol{u}_{1}^{\prime}=\frac{m_{2}}{\left(m_{1}+m_{2}\right)} \boldsymbol{u}_{1} \tag{5.2.3}
\end{align*}
$$

From Eq.s (5.2.2) \& (5.2.3)

$$
\begin{aligned}
& \boldsymbol{K}_{2}^{\prime}=m_{2} \boldsymbol{u}_{2}^{\prime}=-\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)} \boldsymbol{u}_{1}=-\frac{m_{2}}{\left(m_{1}+m_{2}\right)} \boldsymbol{K}_{1} \\
& \boldsymbol{K}_{1}^{\prime}=m_{1} \boldsymbol{u}_{1}^{\prime}=\frac{m_{2} m_{1}}{\left(m_{1}+m_{2}\right)} \boldsymbol{u}_{1}=\frac{m_{2}}{\left(m_{1}+m_{2}\right)} \boldsymbol{K}_{1}
\end{aligned}
$$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations of C.M and Lab. System
Consider the following geometry of the problem
\boldsymbol{r}_{1} and \boldsymbol{r}_{2} are the position vector of " m_{1} " and " m_{1} " in Lab. system.
Where " $\boldsymbol{r}_{1}^{\prime}$ " and " $\boldsymbol{r}_{2}^{\prime}$ " are the position vectors in C.M system.

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}_{1}^{\prime}-\boldsymbol{r}_{2}^{\prime}=\boldsymbol{r}_{1}-\boldsymbol{r}_{2} \tag{5.2.4}
\end{equation*}
$$

Since in C.M system $\boldsymbol{R}^{\prime}=0$ Position vector of C.M in C.M system
$\Rightarrow m_{1} \boldsymbol{r}_{1}^{\prime}+m_{2} \boldsymbol{r}_{2}^{\prime}=0$
Adding and subtracting $m_{2} \boldsymbol{r}_{1}^{\prime}$ in Eq. (5.2.5)
$\Rightarrow\left(m_{1}+m_{1}\right) \boldsymbol{r}_{1}^{\prime}-m_{2}\left(\boldsymbol{r}_{1}^{\prime}-\boldsymbol{r}_{2}^{\prime}\right)=0$
$\Rightarrow\left(m_{1}+m_{1}\right) \boldsymbol{r}_{1}^{\prime}-m_{2} \boldsymbol{r}=0$

$\Rightarrow \boldsymbol{r}_{1}^{\prime}=\frac{m_{2}}{\left(m_{1}+m_{1}\right)} \boldsymbol{r}=\frac{\mu}{m_{1}} \boldsymbol{r}$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations of C.M and Lab. System
And adding and subtracting $m_{1} \boldsymbol{r}_{2}^{\prime}$ we get $\quad \boldsymbol{r}_{2}^{\prime}=-\frac{m_{2}}{\left(m_{1}+m_{1}\right)} \boldsymbol{r}=-\frac{\mu}{m_{2}} \boldsymbol{r}$ (5.2.7)
Eq.(5.2.6)

$\Rightarrow \dot{\boldsymbol{r}}_{1}^{\prime}=\frac{\mu}{m_{1}} \dot{\boldsymbol{r}}$
$\Rightarrow \dot{\boldsymbol{r}}_{2}^{\prime}=-\frac{\mu}{m_{2}} \dot{\boldsymbol{r}}$

(5.2.9)

And Eq. (5.2.7) $\Rightarrow \dot{\boldsymbol{r}_{2}^{\prime}}=-\frac{\mu}{m_{2}} \dot{\boldsymbol{r}}$
From Eq. (5.2.4) $\quad \dot{\boldsymbol{r}}=\dot{\boldsymbol{r}}_{1}^{\prime}-\dot{\boldsymbol{r}}_{2}^{\prime}=\dot{r}_{1}-\boldsymbol{r}_{2}$

$$
\begin{equation*}
\Rightarrow u=\dot{r_{1}^{\prime}}-\dot{\boldsymbol{r}_{2}^{\prime}}=\dot{\boldsymbol{r}_{1}}-\dot{\boldsymbol{r}_{2}} \tag{5.2.10}
\end{equation*}
$$

" \boldsymbol{u} " is the relative velocity of " m_{1} "

$$
\begin{gather*}
m_{1} \dot{\boldsymbol{r}}_{1}^{\prime}=\mu \dot{\boldsymbol{r}}=-m_{2} \dot{\boldsymbol{r}_{2}^{\prime}} \tag{5.2.11}\\
\boldsymbol{P}_{\mathbf{1}}^{\prime}=-\boldsymbol{P}_{\mathbf{2}}^{\prime} \quad \& \quad\left|\boldsymbol{P}_{\mathbf{1}}^{\prime}\right|=\left|\boldsymbol{P}_{\mathbf{2}}^{\prime}\right|
\end{gather*}
$$

Characteristic property of C.M that total momentum before \& after collision will be zero.

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations of C.M and Lab. System

Conservation of momentum in C.M system. Let " $\boldsymbol{K}_{\mathbf{1}}^{\prime}$ " and " $\boldsymbol{K}_{\mathbf{2}}^{\prime}$ " are initial momentum, where " $\boldsymbol{P}_{1}^{\prime}$ " and " $\boldsymbol{P}_{2}^{\prime}$ " final momentum in C.M,

$$
\begin{array}{ll}
& \boldsymbol{K}_{\mathbf{1}}^{\prime}+\boldsymbol{K}_{2}^{\prime}=\boldsymbol{P}_{\mathbf{1}}^{\prime}+\boldsymbol{P}_{\mathbf{2}}^{\prime}=\mathbf{0} \\
& \Rightarrow\left|\boldsymbol{K}_{\mathbf{1}}^{\prime}\right|=\left|\boldsymbol{K}_{2}^{\prime}\right| \\
\text { and } & \Rightarrow\left|\boldsymbol{P}_{\mathbf{1}}^{\prime}\right|=\left|\boldsymbol{P}_{\mathbf{2}}^{\prime}\right| \tag{5.2.14}
\end{array}
$$

Now conservation of energy

$$
\begin{align*}
& \frac{1}{2} m_{1} \dot{\boldsymbol{u}_{1}^{\prime}}+\frac{1}{2} m_{1} \dot{\boldsymbol{u}_{2}^{\prime}}=\frac{1}{2} m_{1} \dot{\boldsymbol{v}_{1}^{\prime}}+\frac{1}{2} m_{1} \dot{\boldsymbol{v}_{2}^{\prime}} \\
& \Rightarrow \frac{\boldsymbol{K}_{1}^{\prime 2}}{2 m_{1}}+\frac{\boldsymbol{K}_{2}^{\prime 2}}{2 m_{2}}=\frac{\boldsymbol{P}_{1}^{\prime 2}}{2 m_{1}}+\frac{\boldsymbol{P}_{2}^{\prime 2}}{2 m_{2}} \tag{5.2.15}
\end{align*}
$$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations of C.M and Lab. System

Using equations, Eq. (5.2.13) \& Eq. (5.2.14)

$$
\begin{array}{lll}
\frac{\boldsymbol{K}_{\mathbf{1}}^{\prime 2}}{2}\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}}\right)=\frac{{\boldsymbol{\boldsymbol { P } _ { \mathbf { 1 } } ^ { \prime }}}_{2}^{2}\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}}\right)}{} & \frac{\boldsymbol{K}_{\mathbf{2}}^{\prime 2}}{2}\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}}\right)=\frac{\boldsymbol{P}_{\mathbf{2}}^{\prime 2}}{2}\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}}\right) \\
\Rightarrow \boldsymbol{K}_{\mathbf{1}}^{\prime 2}=\boldsymbol{P}_{\mathbf{1}}^{\prime 2} & \Rightarrow \boldsymbol{K}_{\mathbf{2}}^{\mathbf{2}}=\boldsymbol{P}_{\mathbf{2}}^{\prime 2} \\
\Rightarrow\left|\boldsymbol{K}_{\mathbf{1}}^{\prime}\right|=\left|\boldsymbol{P}_{\mathbf{1}}^{\prime}\right| & \Rightarrow\left|\boldsymbol{K}_{\mathbf{2}}^{\prime}\right|=\left|\boldsymbol{P}_{\mathbf{2}}^{\prime}\right|
\end{array}
$$

$$
\begin{align*}
& \Rightarrow\left|K_{1}^{\prime}\right|=\left|K_{2}^{\prime}\right|=\left|P_{1}^{\prime}\right|=\left|P_{2}^{\prime}\right| \\
& \left|u_{1}^{\prime}\right|=\left|v_{1}^{\prime}\right| \quad \& \quad\left|u_{2}^{\prime}\right|=\left|v_{2}^{\prime}\right| \tag{5.2.16}
\end{align*}
$$

Therefore, in C.M, the particle momentum and magnitude of velocity remain constant. Therefore, we don't need the separate measurements before and after collision.

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations of C.M and Lab. System

Now in Laboratory system

$$
\begin{equation*}
K_{1}=P_{1}+P_{2} \quad \text { as } \quad K_{2}=0 \tag{5.2.17}
\end{equation*}
$$

Now the Kinetic energy before and after the Collision

$$
\begin{align*}
& \Rightarrow \frac{\mathbf{1}}{\mathbf{2}} m_{1} \boldsymbol{u}_{\mathbf{1}}^{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} m_{2} \boldsymbol{u}_{\mathbf{2}}^{\mathbf{2}}=\frac{\mathbf{1}}{\mathbf{2}} m_{1} \boldsymbol{v}_{\mathbf{1}}^{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} m_{1} \boldsymbol{v}_{\mathbf{1}}^{\mathbf{2}} \\
& \Rightarrow \frac{\boldsymbol{K}_{1}^{2}}{2 m_{1}}=\frac{\boldsymbol{P}_{1}^{2}}{2 m_{1}}+\frac{\boldsymbol{P}_{1}^{2}}{2 m_{2}} \tag{5.2.18}
\end{align*}
$$

In case of laboratory system, we need to measure the momentum before and after collision separately.

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

Consider the figure of scattering of two particles we will now obtain the relation between velocities, momentum and scattering angles.

$$
\begin{aligned}
& \boldsymbol{r}_{\mathbf{1}}=\boldsymbol{R}+\boldsymbol{r}_{\mathbf{1}}^{\prime} \\
& \boldsymbol{r}_{\mathbf{2}}=\boldsymbol{R}+\boldsymbol{r}_{\mathbf{2}}^{\prime} \\
& \text { and } \dot{\boldsymbol{r}_{\mathbf{1}}}=\boldsymbol{v}_{\mathbf{1}}=\boldsymbol{V}+\boldsymbol{v}_{\mathbf{1}}^{\prime}=\boldsymbol{V}+\frac{\mu}{m_{1}} \boldsymbol{u} \\
& \boldsymbol{P}_{\mathbf{1}}=m_{1} \dot{\boldsymbol{r}_{\mathbf{1}}}=m_{1} \boldsymbol{v}_{\mathbf{1}}=m_{1} \boldsymbol{V}+m_{1} \boldsymbol{v}_{\mathbf{1}}^{\prime}=m_{1} \boldsymbol{V}+\mu \boldsymbol{u} \\
& \dot{\boldsymbol{r}_{\mathbf{2}}}=\boldsymbol{v}_{\mathbf{2}}=\boldsymbol{V}+\boldsymbol{v}_{2}^{\prime}=\boldsymbol{V}-\frac{\mu}{m_{1}} \boldsymbol{u} \\
& \boldsymbol{P}_{\mathbf{2}}=m_{2} \dot{\boldsymbol{r}_{2}}=m_{2} \boldsymbol{v}_{\mathbf{2}}=m_{2} \boldsymbol{V}+\boldsymbol{v}_{\mathbf{2}}^{\prime}=m_{2} \boldsymbol{V}-\mu \boldsymbol{u} \\
& M \boldsymbol{V}=\boldsymbol{P}_{\mathbf{1}}+\boldsymbol{P}_{\mathbf{2}}=\boldsymbol{K}_{\mathbf{1}}
\end{aligned}
$$

To understand the above equations we solve the problem geometrically.

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

Since

$$
\left|\boldsymbol{P}_{1}{ }^{\prime}\right|=\left|\boldsymbol{P}_{2}{ }^{\prime}\right|
$$

Consider a circle having radius $\boldsymbol{P}_{\mathbf{1}}{ }^{\prime}=\mu \boldsymbol{u}$ from Eq. (5.2.11)
From figure

$$
\overline{A O}=m_{1} \boldsymbol{V} \quad \boldsymbol{\&} \quad \overline{O C}=m_{2} \boldsymbol{V}
$$

$$
\begin{aligned}
& \overline{A B}=\boldsymbol{P}_{\mathbf{1}}=m_{1} \boldsymbol{V}+\mu \boldsymbol{u}=m_{1} \boldsymbol{V}+\boldsymbol{P}_{\mathbf{1}}{ }^{\prime} \\
& \overline{B C}=\boldsymbol{P}_{\mathbf{2}}=m_{2} \boldsymbol{V}-\mu \boldsymbol{u}=m_{2} \boldsymbol{V}-\boldsymbol{P}_{\mathbf{1}}{ }^{\prime}
\end{aligned}
$$

Since before the collision

$$
\begin{aligned}
& m_{1} \boldsymbol{r}_{\mathbf{1}}+m_{2} \boldsymbol{r}_{\mathbf{2}}=M \boldsymbol{R} \Rightarrow m_{1} \boldsymbol{u}_{\mathbf{1}}+m_{2} \boldsymbol{u}_{\mathbf{2}}=\left(m_{1}+m_{2}\right) \boldsymbol{V} \\
& \Rightarrow \boldsymbol{K}_{\mathbf{1}}+\boldsymbol{K}_{\mathbf{2}}=\left(m_{1}+m_{2}\right) \boldsymbol{V} \\
& \Rightarrow \boldsymbol{K}_{\mathbf{1}}=\left(m_{1}+m_{2}\right) \boldsymbol{V} \\
& \Rightarrow \mathbf{V}=\frac{\boldsymbol{K}_{\mathbf{1}}}{\left(m_{1}+m_{2}\right)}
\end{aligned}
$$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

Now $\quad \overline{O C}=m_{2} \boldsymbol{V}=\frac{m_{2} \boldsymbol{K}_{1}}{\left(m_{1}+m_{2}\right)}$
$m_{2} \boldsymbol{V}=\frac{\mu \boldsymbol{K}_{1}}{m_{1}}=\frac{\mu m_{1} \boldsymbol{u}_{1}}{m_{1}}$
$m_{2} \boldsymbol{V}=\mu \boldsymbol{u}_{\mathbf{1}}=\mu\left(\boldsymbol{u}_{\mathbf{1}}-\boldsymbol{u}_{\mathbf{2}}\right)$ we know that $\boldsymbol{u}_{\mathbf{2}}=\mathbf{0}$
$m_{2} V=\mu u=P_{1}{ }^{\prime}$
Therefore, $\overline{O C}=\overline{O B}$

And Point C must be on circle. Therefore angle $<O B C \&<B C O$ are equal to $\boldsymbol{\theta}_{\mathbf{2}}$

$$
\begin{gathered}
\boldsymbol{\theta}_{2}+\boldsymbol{\theta}_{2}+\boldsymbol{\theta}^{\prime}=\pi \\
\Rightarrow \boldsymbol{\theta}_{2}=\frac{\pi-\boldsymbol{\theta}^{\prime}}{2}
\end{gathered}
$$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

Now position of A which will be decided as following

$$
\frac{\overline{A O}}{\overline{O C}}=\frac{m_{1} V}{m_{2} V}=\frac{m_{1}}{m_{2}}
$$

$$
\text { If } \boldsymbol{m}_{\mathbf{2}}=\boldsymbol{m}_{\mathbf{1}} \quad \text { A must lay on the circle }
$$

$$
\text { If } \boldsymbol{m}_{\boldsymbol{2}}>\boldsymbol{m}_{\mathbf{1}} \quad \text { A must lay inside the circle }
$$

$$
\text { If } \boldsymbol{m}_{\mathbf{2}}<\boldsymbol{m}_{\mathbf{1}} \quad \text { A must lay out side the circle }
$$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

For $\boldsymbol{m}_{\mathbf{2}}=\boldsymbol{m}_{\mathbf{1}} \quad$ A must lays on the circle

$$
\overline{A O}=\overline{O B}
$$

Therefore two angles of $\triangle A O B$ are equal and angle $<O B A$ is also equal to $\boldsymbol{\theta}_{\mathbf{1}}$ and angle $\angle A O B$ is ($\boldsymbol{\pi}-\boldsymbol{\theta}^{\prime}$)

And

$$
\begin{aligned}
& 2 \theta_{1}+\left(\pi-\theta^{\prime}\right)=\pi \\
& \theta_{1}=\frac{\theta^{\prime}}{2} \\
& \theta_{1}+\theta_{2}=\frac{\pi}{2} \\
& \hline
\end{aligned}
$$

Thus if the masses are equal they will move at right angle to each other.

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

For $\boldsymbol{m}_{\mathbf{2}}<\boldsymbol{m}_{\mathbf{1}} \quad$ A must lays out side the circle
There are two values exist as represented by $\overline{A B}$ and $\overline{A B^{\prime}}$ for first particle

And
$\overline{B C}$ and $\overline{B^{\prime} C}$ for second particle
$\overline{A B}$ and $\overline{B C}$ represent forward scattering for which $\boldsymbol{\theta}^{\prime}<\frac{\pi}{2}$

$\overline{A B^{\prime}}$ and $\overline{B^{\prime} C}$ represents back scattering for which $\boldsymbol{\theta}^{\prime}>\frac{\boldsymbol{\pi}}{\mathbf{2}}$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

This is as for as C.M coordinates are concerned.
In Lab. System $\boldsymbol{\theta}_{\mathbf{1}}<\frac{\boldsymbol{\pi}}{\mathbf{2}}$ for both forward \& back scattering.
This angle varies from zero (no scattering) to maximum when AB is tangent to the circle. $\overline{A B}=\overline{A D}$ as shown.

$$
\sin \theta_{1(\max)}=\frac{\overline{O D}}{\overline{O A}}=\frac{\overline{O C}}{\overline{O A}}=\frac{m_{2}}{m_{1}}
$$

Which mean that larger the target is larger will be the scattering angle.
For $\boldsymbol{m}_{\mathbf{2}}>\boldsymbol{m}_{\boldsymbol{1}} \quad$ A must lay inside the circle
Only one value of momentum exist as represented by $\overline{A B}$ in previous figure

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

For General Solution of the problem

$$
\begin{aligned}
\tan \theta_{1} & =\frac{P_{1}^{\prime} \sin \theta^{\prime}}{m_{1} V+P_{1}^{\prime} \cos \theta^{\prime}} \\
\tan \theta_{1} & =\frac{\sin \theta^{\prime}}{\frac{m_{1} V}{P_{1}^{\prime}}+\cos \theta^{\prime}}
\end{aligned}
$$

$\frac{m_{1} V}{P_{1}^{\prime}}=\frac{m_{1} V}{m_{2} V}$
since $m_{2} V=P_{1}^{\prime} \quad$ From figure ${ }_{\boldsymbol{A}}$
And $\quad \frac{m_{1} V}{P_{1}^{\prime}}=\frac{m_{1}}{m_{2}}$
Therefore,

$$
\tan \theta_{1}=\frac{\sin \theta^{\prime}}{\frac{m_{1}}{m_{2}}+\cos \theta^{\prime}}
$$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

$$
\begin{aligned}
& \text { For } m_{1}=m_{2} \\
& \tan \theta_{1}=\frac{\sin \theta^{\prime}}{1+\cos \theta^{\prime}}=\frac{2 \sin \frac{\theta^{\prime}}{2} \cos \frac{\theta^{\prime}}{2}}{2 \cos ^{2} \frac{\theta^{\prime}}{2}} \\
& \Rightarrow \tan \theta_{1}=\frac{\sin \frac{\theta^{\prime}}{2}}{\cos \frac{\theta^{\prime}}{2}} \\
& \Rightarrow \tan \theta_{1}=\tan \frac{\theta^{\prime}}{2} \\
& \Rightarrow \theta_{1}=\frac{\theta^{\prime}}{2}
\end{aligned}
$$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

For $m_{1} \neq m_{2}$
$\tan \theta_{1}=\frac{\sin \theta^{\prime}}{\frac{m_{1}}{m_{2}}+\cos \theta^{\prime}}$ Squaring both sides
$\frac{\sin ^{2} \theta_{1}}{\cos ^{2} \theta_{1}}=\frac{\sin ^{2} \theta^{\prime}}{\left(\frac{m_{1}}{m_{2}}+\cos \theta^{\prime}\right)^{2}}$
$\sin ^{2} \theta_{1}\left(\frac{m_{1}{ }^{2}}{m_{2}{ }^{2}}+\cos ^{2} \theta^{\prime}+2 \frac{m_{1}}{m_{2}} \cos \theta^{\prime}\right)=\sin ^{2} \theta^{\prime} \cos ^{2} \theta_{1}$
$\sin ^{2} \theta_{1}\left(\frac{m_{1}{ }^{2}}{m_{2}{ }^{2}}+\cos ^{2} \theta^{\prime}+2 \frac{m_{1}}{m_{2}} \cos \theta^{\prime}\right)=\left(1-\cos ^{2} \theta^{\prime}\right) \cos ^{2} \theta_{1}$

$$
\left(\sin ^{2} \theta_{1}+\cos ^{2} \theta_{1}\right) \cos ^{2} \theta^{\prime}+\frac{m_{1}^{2}}{m_{2}^{2}} \sin ^{2} \theta_{1}+2 \frac{m_{1}}{m_{2}} \sin ^{2} \theta_{1} \cos ^{\prime}=\cos ^{2} \theta_{1}
$$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

$\left(\sin ^{2} \theta_{1}+\cos ^{2} \theta_{1}\right) \cos ^{2} \theta^{\prime}+\frac{m_{1}{ }^{2}}{m_{2}{ }^{2}} \sin ^{2} \theta_{1}+2 \frac{m_{1}}{m_{2}} \sin ^{2} \theta_{1} \cos \theta^{\prime}=\cos ^{2} \theta_{1}$
$\Rightarrow \cos ^{2} \theta^{\prime}+2 \frac{m_{1}}{m_{2}} \sin ^{2} \theta_{1} \cos \theta^{\prime}+\left(\frac{m_{1}{ }^{2}}{m_{2}{ }^{2}} \sin ^{2} \theta_{1}-\cos ^{2} \theta_{1}\right)=0$
This equation is quadratic in $\cos \theta^{\prime}$ the solution of the equation will be as follow

$$
\cos \theta^{\prime}=-\frac{m_{1}}{m_{2}} \sin ^{2} \theta_{1} \pm \sqrt{\frac{m_{1}^{2}}{m_{2}^{2}} \sin ^{4} \theta_{1}-\frac{m_{1}^{2}}{m_{2}^{2}} \sin ^{2} \theta_{1}+\cos ^{2} \theta_{1}}
$$

$$
\cos \theta^{\prime}=-\frac{m_{1}}{m_{2}} \sin ^{2} \theta_{1} \pm \sqrt{\frac{m_{1}^{2}}{m_{2}^{2}} \sin ^{2} \theta_{1}\left(1-\cos ^{2} \theta_{1}\right)-\frac{m_{1}^{2}}{m_{2}^{2}} \sin ^{2} \theta_{1}+\cos ^{2} \theta_{1}}
$$

$$
\cos \theta^{\prime}=-\frac{m_{1}}{m_{2}} \sin ^{2} \theta_{1} \pm \sqrt{\frac{m_{1}^{2}}{m_{2}} / \sin ^{2} \theta_{1}-\frac{m_{1}^{2}}{m_{2}^{2}} \sin ^{2} \theta_{1} \cos ^{2} \theta_{1}-\frac{m_{1}^{2}}{m_{2}^{2}} / \sin ^{2} \theta_{1}+\cos ^{2} \theta_{1}}
$$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System
$\cos \theta^{\prime}=-\frac{m_{1}}{m_{2}} \sin ^{2} \theta_{1} \pm \sqrt{-\frac{m_{1}^{2}}{m_{2}^{2}} \sin ^{2} \theta_{1} \cos ^{2} \theta_{1}+\cos ^{2} \theta_{1}}$
$\cos \theta^{\prime}=-\frac{m_{1}}{m_{2}} \sin ^{2} \theta_{1} \pm \cos \theta_{1} \sqrt{1-\frac{m_{1}^{2}}{m_{2}^{2}} \sin ^{2} \theta_{1}}$
For $\quad \theta_{1(\max)}, \quad \sin \theta_{1(\max)}=\frac{m_{2}}{m_{1}}$ putting in above equation
$\cos \theta^{\prime}=-\frac{m_{2}}{m_{1}}\left(\frac{m_{2}}{m_{1}}\right)^{2} \pm \cos \theta_{1(\max)} \sqrt{1-1}$
$\cos \theta^{\prime}=-\frac{m_{2}}{m_{1}}=-\sin \theta_{1(\max)}$
$\cos \theta^{\prime}=\cos \left(\theta_{1(\max)}+\frac{\pi}{2}\right)$
$\Rightarrow \theta_{1(\max)}=\theta^{\prime}-\frac{\pi}{2}$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

Transformation equations for angles in C.M and Lab. System

Now for θ_{2}

$$
\begin{aligned}
& \tan \theta_{2}=\frac{P_{1}^{\prime} \sin \theta^{\prime}}{m_{2} V-P_{1}^{\prime} \cos \theta^{\prime}} \\
& \Rightarrow \tan \theta_{2}=\frac{\sin \theta^{\prime}}{\frac{m_{2} V}{P_{1}^{\prime}}+\cos \theta^{\prime}} \\
& \Rightarrow \tan \theta_{2}=\frac{\sin \theta^{\prime}}{1+\cos \theta^{\prime}} \\
& \Rightarrow \tan \theta_{2}=\cot \frac{\theta^{\prime}}{2}=\tan \left(\frac{\pi}{2}-\frac{\theta^{\prime}}{2}\right) \\
& \Rightarrow \theta_{2}=\frac{\pi-\theta^{\prime}}{2}
\end{aligned}
$$

5.2 Elastic Scattering: Laboratory and Centre of Mass System

The transformation equation of angle in two frame of reference are defined

$$
\cos \theta^{\prime}=-\frac{m_{1}}{m_{2}} \sin ^{2} \theta_{1} \pm \cos \theta_{1} \sqrt{1-\frac{m_{1}^{2}}{m_{2}^{2}} \sin ^{2} \theta_{1}}
$$

We have predicted the maximum scattering angle $\theta_{1(\max)}=\theta^{\prime}-\frac{\pi}{2}$ and the possible angle for the particles of equal mass.

Where $\theta_{1}=\frac{\theta^{\prime}}{2}$ and $\theta_{2}=\frac{\pi-\theta^{\prime}}{2}$
The angle θ^{\prime} varies from 0 to π
Angle θ_{1} from 0 to $\frac{\pi}{2}$
And θ_{2} from $\frac{\pi}{2}$ to 0
Such that the sum of θ_{1} and θ_{2} will not exceed $\frac{\pi}{2}$.

